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The spread of true and false
news online
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We investigated the differential diffusion of all of the verified true and false news stories
distributed on Twitter from 2006 to 2017.The data comprise ~126,000 stories tweeted by
~3 million people more than 4.5 million times.We classified news as true or false using
information from six independent fact-checking organizations that exhibited 95 to 98%
agreement on the classifications. Falsehood diffused significantly farther, faster, deeper, and
more broadly than the truth in all categories of information, and the effects were more
pronounced for false political news than for false news about terrorism, natural disasters,
science, urban legends, or financial information.We found that false news was more novel than
true news, which suggests that people were more likely to share novel information.Whereas
false stories inspired fear, disgust, and surprise in replies, true stories inspired anticipation,
sadness, joy, and trust. Contrary to conventional wisdom, robots accelerated the spread
of true and false news at the same rate, implying that false news spreads more than the truth
because humans, not robots, are more likely to spread it.

F
oundational theories of decision-making
(1–3), cooperation (4), communication (5),
and markets (6) all view some concep-
tualization of truth or accuracy as central
to the functioning of nearly every human

endeavor. Yet, both true and false information
spreads rapidly through online media. Defining
what is true and false has become a common
political strategy, replacing debates based on
a mutually agreed on set of facts. Our economies
are not immune to the spread of falsity either.
False rumors have affected stock prices and the
motivation for large-scale investments, for ex-
ample, wiping out $130 billion in stock value
after a false tweet claimed that Barack Obama
was injured in an explosion (7). Indeed, our re-
sponses to everything from natural disasters
(8, 9) to terrorist attacks (10) have been disrupted
by the spread of false news online.
New social technologies, which facilitate rapid

information sharing and large-scale information
cascades, can enable the spread of misinformation
(i.e., information that is inaccurate ormisleading).
But although more and more of our access to
information and news is guided by these new
technologies (11), we know little about their con-
tribution to the spread of falsity online. Though
considerable attention has been paid to anecdotal
analyses of the spread of false news by the media
(12), there are few large-scale empirical investiga-
tions of the diffusion ofmisinformation or its social
origins. Studies of the spread of misinformation
are currently limited to analyses of small, ad hoc
samples that ignore two of the most important
scientific questions: How do truth and falsity
diffuse differently, and what factors of human
judgment explain these differences?

Current work analyzes the spread of single
rumors, like the discovery of the Higgs boson
(13) or the Haitian earthquake of 2010 (14), and
multiple rumors from a single disaster event, like
the Boston Marathon bombing of 2013 (10), or it
develops theoretical models of rumor diffusion
(15), methods for rumor detection (16), credibility
evaluation (17, 18), or interventions to curtail the
spread of rumors (19). But almost no studies com-
prehensively evaluate differences in the spread
of truth and falsity across topics or examine
why false news may spread differently than the
truth. For example, although Del Vicario et al.
(20) and Bessi et al. (21) studied the spread of
scientific and conspiracy-theory stories, they
did not evaluate their veracity. Scientific and
conspiracy-theory stories can both be either true
or false, and they differ on stylistic dimensions
that are important to their spread but orthogonal
to their veracity. To understand the spread of
false news, it is necessary to examine diffusion
after differentiating true and false scientific stories
and true and false conspiracy-theory stories and
controlling for the topical and stylistic differences
between the categories themselves. The only study
to date that segments rumors by veracity is that of
Friggeri et al. (19), who analyzed ~4000 rumors
spreading on Facebook and focusedmore on how
fact checking affects rumor propagation than on
how falsity diffuses differently than the truth (22).
In our current political climate and in the

academic literature, afluid terminology has arisen
around “fake news,” foreign interventions in
U.S. politics through socialmedia, and our under-
standing of what constitutes news, fake news,
false news, rumors, rumor cascades, and other
related terms. Although, at one time, it may have
been appropriate to think of fake news as refer-
ring to the veracity of a news story, we now
believe that this phrase has been irredeemably
polarized in our current political and media cli-
mate. As politicians have implemented a political
strategy of labeling news sources that do not

support their positions as unreliable or fake news,
whereas sources that support their positions are
labeled reliable or not fake, the term has lost all
connection to the actual veracity of the informa-
tion presented, rendering it meaningless for use
in academic classification. We have therefore ex-
plicitly avoided the term fake news throughout
this paper and instead use the more objectively
verifiable terms “true” or “false” news. Although
the terms fake news and misinformation also
imply a willful distortion of the truth, we do not
make any claims about the intent of the purveyors
of the information in our analyses. We instead
focus our attention on veracity and stories that
have been verified as true or false.
We also purposefully adopt a broad definition

of the term news. Rather than defining what
constitutes news on the basis of the institutional
source of the assertions in a story, we refer to any
asserted claim made on Twitter as news (we de-
fend this decision in the supplementarymaterials
section on “reliable sources,” section S1.2). We
define news as any story or claim with an asser-
tion in it and a rumor as the social phenomena
of a news story or claim spreading or diffusing
through the Twitter network. That is, rumors are
inherently social and involve the sharing of claims
between people. News, on the other hand, is an
assertionwith claims, whether it is shared or not.
A rumor cascade begins on Twitter when a

user makes an assertion about a topic in a tweet,
which could include written text, photos, or links
to articles online. Others then propagate the
rumor by retweeting it. A rumor’s diffusion pro-
cess can be characterized as having one or more
cascades, whichwe define as instances of a rumor-
spreading pattern that exhibit an unbroken re-
tweet chain with a common, singular origin. For
example, an individual could start a rumor cas-
cade by tweeting a story or claimwith an assertion
in it, and another individual could independently
start a second cascade of the same rumor (per-
taining to the same story or claim) that is com-
pletely independent of the first cascade, except
that it pertains to the same story or claim. If they
remain independent, they represent two cascades
of the same rumor. Cascades can be as small as size
one (meaningnoone retweeted the original tweet).
The number of cascades that make up a rumor is
equal to the number of times the story or claimwas
independently tweeted by a user (not retweeted).
So, if a rumor “A” is tweeted by 10 people separate-
ly, but not retweeted, it would have 10 cascades,
each of size one. Conversely, if a second rumor
“B” is independently tweeted by two people and
each of those two tweets is retweeted 100 times,
the rumor would consist of two cascades, each
of size 100.
Here we investigate the differential diffusion

of true, false, and mixed (partially true, partially
false) news stories using a comprehensive data
set of all of the fact-checked rumor cascades that
spread on Twitter from its inception in 2006 to
2017. The data include ~126,000 rumor cascades
spread by ~3million peoplemore than 4.5million
times.We sampled all rumor cascades investigated
by six independent fact-checking organizations
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(snopes.com, politifact.com, factcheck.org, truthor-
fiction.com, hoax-slayer.com, and urbanlegends.
about.com) by parsing the title, body, and verdict
(true, false, or mixed) of each rumor investigation
reported on their websites and automatically
collecting the cascades corresponding to those
rumors on Twitter. The result was a sample of
rumor cascades whose veracity had been agreed
on by these organizations between 95 and 98%of
the time.We cataloged the diffusion of the rumor
cascades by collecting all English-language replies
to tweets that contained a link to any of the
aforementioned websites from 2006 to 2017 and
used optical character recognition to extract text
from images where needed. For each reply tweet,
we extracted the original tweet being replied to
and all the retweets of the original tweet. Each
retweet cascade represents a rumor propagating
on Twitter that has been verified as true or false
by the fact-checking organizations (see the sup-
plementarymaterials formore details on cascade
construction). We then quantified the cascades’

depth (the number of retweet hops from the
origin tweet over time, where a hop is a retweet
by a new unique user), size (the number of users
involved in the cascade over time), maximum
breadth (the maximum number of users involved
in the cascade at any depth), and structural vi-
rality (23) (a measure that interpolates between
content spread through a single, large broadcast
and that which spreads through multiple gen-
erations, with any one individual directly respon-
sible for only a fraction of the total spread) (see
the supplementary materials for more detail on
the measurement of rumor diffusion).
As a rumor is retweeted, the depth, size, max-

imum breadth, and structural virality of the cas-
cade increase (Fig. 1A). A greater fraction of false
rumors experienced between 1 and 1000 cascades,
whereas a greater fraction of true rumors experi-
encedmore than 1000 cascades (Fig. 1B); this was
also true for rumors based on political news (Fig.
1D). The total number of false rumors peaked at
the end of both 2013 and 2015 and again at the

end of 2016, corresponding to the last U.S. presi-
dential election (Fig. 1C). The data also show
clear increases in the total number of false polit-
ical rumors during the 2012 and 2016 U.S. presi-
dential elections (Fig. 1E) and a spike in rumors
that contained partially true and partially false
information during the Russian annexation of
Crimea in 2014 (Fig. 1E). Politics was the largest
rumor category in our data, with ~45,000 cas-
cades, followedbyurban legends, business, terror-
ism, science, entertainment, and natural disasters
(Fig. 1F).
When we analyzed the diffusion dynamics of

true and false rumors, we found that falsehood
diffused significantly farther, faster, deeper, and
more broadly than the truth in all categories of
information [Kolmogorov-Smirnov (K-S) tests are
reported in tables S3 to S10]. A significantly greater
fraction of false cascades than true cascades
exceeded a depth of 10, and the top 0.01% of false
cascades diffused eight hops deeper into the
Twittersphere than the truth, diffusing to depths
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Fig. 1. Rumor cascades. (A) An example rumor cascade collected by our
method aswell as its depth, size,maximumbreadth, and structural virality over
time. “Nodes” are users. (B) The complementary cumulative distribution
functions (CCDFs) of true, false, and mixed (partially true and partially false)
cascades, measuring the fraction of rumors that exhibit a given number of
cascades. (C) Quarterly counts of all true, false, and mixed rumor cascades

that diffused on Twitter between 2006 and 2017, annotatedwith example rumors
in each category. (D) The CCDFs of true, false, and mixed political cascades.
(E) Quarterly counts of all true, false, and mixed political rumor cascades that
diffused on Twitter between 2006 and 2017, annotated with example rumors in
each category. (F) A histogram of the total number of rumor cascades in our
data across the seven most frequent topical categories.
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greater than 19 hops from the origin tweet (Fig.
2A). Falsehood also reached farmore people than
the truth. Whereas the truth rarely diffused to
more than 1000 people, the top 1% of false-news
cascades routinely diffused to between 1000 and
100,000 people (Fig. 2B). Falsehood reachedmore
people at every depth of a cascade than the truth,
meaning that many more people retweeted false-
hood than they did the truth (Fig. 2C). The spread
of falsehood was aided by its virality, meaning
that falsehood did not simply spread through
broadcast dynamics but rather through peer-to-
peer diffusion characterized by a viral branching
process (Fig. 2D).

It took the truth about six times as long as
falsehood to reach 1500 people (Fig. 2F) and
20 times as long as falsehood to reach a cascade
depth of 10 (Fig. 2E). As the truth never diffused
beyond a depth of 10, we saw that falsehood
reached a depth of 19 nearly 10 times faster than
the truth reached a depth of 10 (Fig. 2E). Falsehood
also diffused significantly more broadly (Fig. 2H)
and was retweeted by more unique users than the
truth at every cascade depth (Fig. 2G).
False political news (Fig. 1D) traveled deeper

(Fig. 3A) andmore broadly (Fig. 3C), reachedmore
people (Fig. 3B), andwasmore viral than any other
category of false information (Fig. 3D). False po-

litical news also diffused deeper more quickly
(Fig. 3E) and reached more than 20,000 people
nearly three times faster than all other types of
false news reached 10,000 people (Fig. 3F). Al-
though the other categories of false news reached
about the same number of unique users at depths
between 1 and 10, false political news routinely
reached the most unique users at depths greater
than 10 (Fig. 3G). Although all other categories
of false news traveled slightly more broadly at
shallower depths, false political news traveled
more broadly at greater depths, indicating that
more-popular false political news items exhibited
broader andmore-accelerated diffusion dynamics
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Fig. 2. Complementary cumulative distribution functions (CCDFs) of
true and false rumor cascades. (A) Depth. (B) Size. (C) Maximum
breadth. (D) Structural virality. (E and F) The number of minutes it
takes for true and false rumor cascades to reach any (E) depth and (F)
number of unique Twitter users. (G) The number of unique Twitter

users reached at every depth and (H) the mean breadth of true and
false rumor cascades at every depth. In (H), plot is lognormal. Standard
errors were clustered at the rumor level (i.e., cascades belonging to
the same rumor were clustered together; see supplementary materials
for additional details).

Fig. 3. Complementary cumulative distribution functions (CCDFs) of
false political and other types of rumor cascades. (A) Depth. (B) Size.
(C) Maximum breadth. (D) Structural virality. (E and F) The number of
minutes it takes for false political and other false news cascades to reach

any (E) depth and (F) number of unique Twitter users. (G) The number
of unique Twitter users reached at every depth and (H) the mean breadth
of these false rumor cascades at every depth. In (H), plot is lognormal.
Standard errors were clustered at the rumor level.
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(Fig. 3H). Analysis of all news categories showed
thatnewsaboutpolitics, urban legends, and science
spread to the most people, whereas news about
politics and urban legends spread the fastest
and were the most viral in terms of their struc-
tural virality (see fig. S11 for detailed comparisons
across all topics).
One might suspect that structural elements of

the network or individual characteristics of the
users involved in the cascades explain why falsity
travels with greater velocity than the truth. Per-
haps those who spread falsity “followed” more
people, had more followers, tweeted more often,
were more often “verified” users, or had been on
Twitter longer. But when we compared users in-
volved in true and false rumor cascades, we
found that the opposite was true in every case.
Users who spread false news had significant-
ly fewer followers (K-S test = 0.104, P ~ 0.0),
followed significantly fewer people (K-S test =
0.136, P ~ 0.0), were significantly less active on
Twitter (K-S test = 0.054, P ~ 0.0), were verified
significantly less often (K-S test = 0.004,P<0.001),
andhad been onTwitter for significantly less time
(K-S test = 0.125, P ~ 0.0) (Fig. 4A). Falsehood

diffused farther and faster than the truth despite
these differences, not because of them.
When we estimated a model of the likelihood

of retweeting, we found that falsehoods were
70% more likely to be retweeted than the truth
(Wald chi-square test, P ~ 0.0), even when con-
trolling for the account age, activity level, and
number of followers and followees of the origi-
nal tweeter, as well as whether the original tweet-
er was a verified user (Fig. 4B). Because user
characteristics and network structure could not
explain the differential diffusion of truth and
falsity, we sought alternative explanations for
the differences in their diffusion dynamics.
One alternative explanation emerges from in-

formation theory and Bayesian decision theory.
Novelty attracts human attention (24), con-
tributes to productive decision-making (25), and
encourages information sharing (26) because
novelty updates our understanding of the world.
When information is novel, it is not only surpris-
ing, but also more valuable, both from an infor-
mation theoretic perspective [in that it provides
the greatest aid to decision-making (25)] and
from a social perspective [in that it conveys so-

cial status on one that is “in the know” or has
access to unique “inside” information (26)]. We
therefore tested whether falsity was more novel
than the truth and whether Twitter users were
more likely to retweet information that was
more novel.
To assess novelty, we randomly selected ~5000

users who propagated true and false rumors and
extracted a random sample of ~25,000 tweets
that they were exposed to in the 60 days prior
to their decision to retweet a rumor. We then
specified a latent Dirichlet Allocation Topic model
(27), with 200 topics and trained on 10 million
English-language tweets, to calculate the in-
formation distance between the rumor tweets
and all the prior tweets that users were exposed
to before retweeting the rumor tweets. This
generated a probability distribution over the
200 topics for each tweet in our data set.We then
measured how novel the information in the true
and false rumors was by comparing the topic
distributions of the rumor tweets with the topic
distributions of the tweets to which users were
exposed in the 60 days before their retweet. We
found that false rumors were significantly more
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Fig. 4. Models estimating correlates of news diffusion, the novelty of
true and false news, and the emotional content of replies to news.
(A) Descriptive statistics on users who participated in true and false rumor
cascades as well as K-S tests of the differences in the distributions of these
measures across true and false rumor cascades. (B) Results of a logistic
regression model estimating users’ likelihood of retweeting a rumor as a
function of variables shown at the left. coeff, logit coefficient; z, z score.
(C) Differences in the information uniqueness (IU), scaled Bhattacharyya
distance (BD), and K-L divergence (KL) of true (green) and false (red)
rumor tweets compared to the corpus of prior tweets the user was exposed
to in the 60 days before retweeting the rumor tweet. (D) The emotional

content of replies to true (green) and false (red) rumor tweets across
seven dimensions categorized by the NRC. (E) Mean and variance
of the IU, KL, and BD of true and false rumor tweets compared to the
corpus of prior tweets the user has seen in the 60 days before seeing the
rumor tweet as well as K-S tests of their differences across true and false
rumors. (F) Mean and variance of the emotional content of replies to
true and false rumor tweets across seven dimensions categorized
by the NRC as well as K-S tests of their differences across true and
false rumors. All standard errors are clustered at the rumor level,
and all models are estimated with cluster-robust standard errors at
the rumor level.
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novel than the truth across all novelty metrics,
displaying significantly higher information
uniqueness (K-S test = 0.457, P ~ 0.0) (28),
Kullback-Leibler (K-L) divergence (K-S test =
0.433, P ~ 0.0) (29), and Bhattacharyya distance
(K-S test = 0.415, P ~ 0.0) (which is similar to the
Hellinger distance) (30). The last two metrics
measure differences between probability distri-
butions representing the topical content of the
incoming tweet and the corpus of previous tweets
to which users were exposed.
Although false rumors were measurably more

novel than true rumors, users may not have per-
ceived them as such.We therefore assessed users’
perceptions of the information contained in true
and false rumors by comparing the emotional
content of replies to true and false rumors. We
categorized the emotion in the replies by using
the leading lexicon curated by the National Re-
search Council Canada (NRC), which provides a
comprehensive list of ~140,000 English words
and their associations with eight emotions based
on Plutchik’s (31) work on basic emotion—anger,
fear, anticipation, trust, surprise, sadness, joy,
and disgust (32)—and a list of ~32,000 Twitter
hashtags and their weighted associations with
the same emotions (33). We removed stop words
and URLs from the reply tweets and calculated
the fraction of words in the tweets that related to
each of the eight emotions, creating a vector of
emotion weights for each reply that summed to
one across the emotions. We found that false
rumors inspired replies expressing greater sur-
prise (K-S test = 0.205,P~ 0.0), corroborating the
novelty hypothesis, and greater disgust (K-S test =
0.102, P ~ 0.0), whereas the truth inspired replies
that expressed greater sadness (K-S test = 0.037,
P ~ 0.0), anticipation (K-S test = 0.038, P ~ 0.0),
joy (K-S test = 0.061,P~ 0.0), and trust (K-S test =
0.060, P ~ 0.0) (Fig. 4, D and F). The emotions
expressed in reply to falsehoods may illuminate
additional factors, beyond novelty, that inspire
people to share false news. Although we cannot
claim that novelty causes retweets or that novel-
ty is the only reason why false news is retweeted
more often, we do find that false news is more
novel and that novel information is more likely
to be retweeted.
Numerous diagnostic statistics and manipula-

tion checks validated our results and confirmed
their robustness. First, as there were multiple
cascades for every true and false rumor, the var-
iance of and error terms associatedwith cascades
corresponding to the same rumor will be cor-
related. We therefore specified cluster-robust
standard errors and calculated all variance statis-
tics clustered at the rumor level. We tested the
robustness of our findings to this specification
by comparing analyses with andwithout clustered
errors and found that, although clustering reduced
the precision of our estimates as expected, the
directions, magnitudes, and significance of our
results did not change, and chi-square (P ~ 0.0)
and deviance (d) goodness-of-fit tests (d= 3.4649×
10–6, P ~ 1.0) indicate that the models are well
specified (see supplementarymaterials formore
detail).

Second, a selection bias may arise from the
restriction of our sample to tweets fact checked
by the six organizationswe relied on. Fact checking
may select certain types of rumors or draw addi-
tional attention to them. To validate the robust-
ness of our analysis to this selection and the
generalizability of our results to all true and false
rumor cascades, we independently verified a sec-
ond sample of rumor cascades that were not ver-
ified by any fact-checking organization. These
rumors were fact checked by three undergrad-
uate students at Massachusetts Institute of Tech-
nology (MIT) and Wellesley College. We trained
the students to detect and investigate rumors with
our automated rumor-detection algorithm run-
ning on 3 million English-language tweets from
2016 (34). The undergraduate annotators inves-
tigated the veracity of the detected rumors using
simple search queries on the web.We asked them
to label the rumors as true, false, or mixed on the
basis of their research and to discard all rumors
previously investigated by one of the fact-checking
organizations. The annotators, who worked in-
dependently and were not aware of one another,
agreed on the veracity of 90% of the 13,240 rumor
cascades that they investigated and achieved a
Fleiss’ kappa of 0.88. When we compared the
diffusion dynamics of the true and false rumors
that the annotators agreed on, we found results
nearly identical to those estimated with our
main data set (see fig. S17). False rumors in the
robustness data set had greater depth (K-S test =
0.139, P ~ 0.0), size (K-S test = 0.131, P ~ 0.0), max-
imumbreadth (K-S test = 0.139,P~0.0), structural
virality (K-S test = 0.066, P ~ 0.0), and speed
(fig. S17) and a greater number of unique users
at each depth (fig. S17). When we broadened the
analysis to include majority-rule labeling, rather
than unanimity, we again found the same results
(see supplementary materials for results using
majority-rule labeling).
Third, although the differential diffusion of

truth and falsity is interesting with or without
robot, or bot, activity, one may worry that our
conclusions about human judgment may be
biased by the presence of bots in our analysis.
We therefore used a sophisticated bot-detection
algorithm (35) to identify and remove all bots
before running the analysis. When we added
bot traffic back into the analysis, we found that
none of our main conclusions changed—false
news still spread farther, faster, deeper, and more
broadly than the truth in all categories of infor-
mation. The results remained the same when we
removed all tweet cascades started by bots, includ-
ing human retweets of original bot tweets (see
supplementary materials, section S8.3) and when
we used a second, independent bot-detection
algorithm (see supplementary materials, sec-
tion S8.3.5) and varied the algorithm’s sensitivity
threshold to verify the robustness of our analy-
sis (see supplementary materials, section S8.3.4).
Although the inclusion of bots, as measured by
the two state-of-the-art bot-detection algorithms
we used in our analysis, accelerated the spread
of both true and false news, it affected their
spread roughly equally. This suggests that false

news spreads farther, faster, deeper, and more
broadly than the truth because humans, not ro-
bots, are more likely to spread it.
Finally, more research on the behavioral ex-

planations of differences in the diffusion of true
and false news is clearly warranted. In par-
ticular, more robust identification of the factors
of human judgment that drive the spread of true
and false news online requires more direct inter-
actionwith users through interviews, surveys, lab
experiments, and even neuroimaging.We encour-
age these and other approaches to the investiga-
tion of the factors of human judgment that drive
the spread of true and false news in future work.
False news can drive the misallocation of re-

sources during terror attacks and natural disas-
ters, the misalignment of business investments,
and misinformed elections. Unfortunately, although
the amount of false news online is clearly in-
creasing (Fig. 1, C and E), the scientific under-
standing of how and why false news spreads is
currently based on ad hoc rather than large-scale
systematic analyses. Our analysis of all the ver-
ified true and false rumors that spread on Twitter
confirms that false news spreadsmore pervasively
than the truth online. It also overturns conven-
tional wisdom about how false news spreads.
Though one might expect network structure
and individual characteristics of spreaders to
favor and promote false news, the opposite is
true. The greater likelihood of people to re-
tweet falsity more than the truth is what drives
the spread of false news, despite network and
individual factors that favor the truth. Further-
more, although recent testimony before con-
gressional committees on misinformation in the
United States has focused on the role of bots in
spreading false news (36), we conclude that
human behavior contributes more to the differ-
ential spread of falsity and truth than automated
robots do. This implies that misinformation-
containment policies should also emphasize be-
havioral interventions, like labeling and incentives
to dissuade the spread of misinformation, rather
than focusing exclusively on curtailing bots. Un-
derstanding how false news spreads is the first
step toward containing it. We hope our work in-
spires more large-scale research into the causes
and consequences of the spread of false news as
well as its potential cures.
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S1 Definitions and Terminology

S1.1 True News, False News, Rumors and Rumor Cascades
Some work develops theoretical models of rumor diffusion [37, 38, 39, 40], or
methods for rumor detection [41, 42, 43, 44], credibility evaluation [45] or in-
terventions to curtail the spread of rumors [46, 47, 48]. But, almost no studies
comprehensively evaluate differences in the spread of truth and falsity across top-
ics or examine why false news may spread differently than the truth. For example,
while Bessi et al [49, 50] study the spread of scientific and conspiracy-theory
stories, they do not evaluate their veracity. We therefore focus our analysis on
veracity and stories that have been verified as true or false.

We also purposefully adopt a broad definition of the term “news.” Rather than
defining what constitutes “news” based on the institutional source of the assertions
in a story, we refer to any asserted claim made on Twitter as “news” regardless of
the institutional source of that “news” (we defend this decision in the next section
of the SI on “Reliable Sources”).

We define “news” as any story or claim with an assertion in it and a “rumor”
as the social phenomena of a news story or claim spreading or diffusing through
the Twitter network. A rumor’s diffusion process can be characterized as having
one or more “cascades,” which we define as instances of a rumor spreading pat-
tern that exhibit an unbroken retweet chain with a common, singular origin. For
example, an individual could start a rumor cascade by tweeting a story or claim
with an assertion in it and another individual could independently start a second
cascade of the same rumor (pertaining to the same story or claim) that is com-
pletely independent of the first cascade except that it pertains to the same story or
claim. If they remain independent, then they represent two cascades of the same
rumor. Cascades can be as small as size 1 (meaning no one retweeted the original
tweet). The number of cascades that make up a rumor is equal to the number of
times the story or claim was independently tweeted by a user (not retweeted).

S1.2 A Note on Reliable Sources and the News
Some colleagues have suggested that we classify or somehow sample “actual
news,” as opposed to errant rumors, by turning to what they have referred to as
“reliable sources.” However, after careful consideration, we have rejected this ap-
proach in favor of a broader definition of “news” and more objectively verifiable
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definitions “truth” and “falsity.”
We believe the only way to robustly study “true” and “false” news is to study

stories that have been verified as true or false by multiple independent fact check-
ing organizations. Since our focus is on veracity and as we clearly argue in the
main text why veracity it a key feature of interest in the spread of news, we are
committed to analyzing true and false news that has been verified.

We also think that a reliance on “reliable sources” to distinguish “news” from
other types of information is extremely problematic for at least two reasons. First
counterclaims of (unverified) reliability are the subject of considerable disagree-
ment in our polarized political landscape in the United States and around the
world. We expand on this point below. Second, politicians are labeling news
as “fake” as a political strategy and claiming that sources that don’t support them
are “unreliable” while sources that do support them are “reliable,” in effect politi-
cizing the meaning and classification of “reliable sources.”

A PEW research study [51] of American’s confidence in the media has found
that the sources that “consistently conservative” and “mostly conservative” Amer-
icans find reliable or trustworthy are the exact sources that “consistently liberal”
and “mostly liberal” Americans find unreliable and untrustworthy (see the Figures
below). Although one person may find certain sources more reliable, chances are
there are a significant number of people who see those sources as unreliable. There
is simply no agreement about which sources are “reliable sources” and which are
not.

Given this evidence, we do not see how a scientific study could remain ob-
jective and take a position on which sources are “reliable” and which are not.
Instead, to get at the difference between true and false news, we feel it is impera-
tive to focus on which stories (from any source) have been verified as true or false
by multiple independent fact checking organizations.

To demonstrate the point further, we considered the “most reliable sources”
listed in the PEW study (those that are the most trusted by the greatest number
of Americans) and, for any source with at least one verified study, examined the
fraction of their verified stories which were deemed true or false by the six inde-
pendent fact checking organizations we worked with. This analysis revealed, first,
that the most trusted sources are not necessarily the ones that record the greatest
fraction of verified stories which are true; and second, that there is no correlation
between the degree to which the American public finds a source “reliable” and the
fraction of its verified stories which are true (see below). For these reasons, we
cannot see a more reliable way determining what should be considered ”news”
than adopting a broad and inclusive view of news.
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Figure S1

While one may argue that analyzing stories verified by the six independent
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Figure S2
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Figure S3: The percent of Americans that trust an outlet (recorded in the the PEW
study for trust in media) vs the average veracity of statements investigated by the
fact checking organization Politifact in our sample.

fact checking organizations may introduce its own selection bias, as we describe
in the main text and expound on below, we cannot think of a more objective way
to distinguish true from false content than to rely on multiple independent fact
checking organizations. Furthermore, it is for this reason that we analyze a sec-
ond set of news stories that were never fact checked by any of the original fact
checking organizations, but that instead were fact checked by three independent
fact checkers that we recruited to verify a robustness sample of approximately
13,000 rumor cascades independently (see sections S8.1 and S8.2). We feel this
addresses the potential selection bias introduced by our reliance on the six in-
dependent fact checking organizations in our main analysis and makes ours the
most rigorous approach to defining truth and falsehood, without wading into a
debate about which institutional sources are reliable and which are not. While
our approach is certainly not the only way to analyze the diffusion of true and
false news, we encourage future research to also clearly define the terms used in
analyses to enable comparability across disparate studies.
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S2 Data
A rumor cascade on Twitter starts with a user making an assertion about a topic
(this could be text, a photo or a link to an article); people then propagate the news
by retweeting it. In many cases, people also reply to the original tweet. These
replies sometimes contain links to fact checking organizations that either confirm
or debunk the rumor in the origin tweet. We used such cascades to identify rumors
that are propagating on Twitter. We explain the rumor detection, classification and
collection methods in detail below.

S2.1 Rumor Dataset
We identified six fact checking organizations well-known for thoroughly investi-
gating and debunking or confirming rumors. The websites for these organizations
are as follows: snopes.com, politifact.com, factcheck.org, truthorfiction.com,
hoax-slayer.com, and urbanlegends.about.com. We automatically scraped these
websites, collected the archived rumors and parsed the title, body and verdict of
each rumor. These organizations have various ways of issuing a verdict on a ru-
mor, for instance snopes articles are given a verdict of “False”, “Mostly False”,
“Mixture”, “Mostly True” and “True”; while politifact articles are given a “Pants
on Fire” rating for false rumors. We normalized the verdicts across the different
sites by mapping them to a score of 1 to 5 (1=“False”, 2=“Mostly False”, 3=“Mix-
ture”, 4=“Mostly True”, 5=“True”). For our analysis, we grouped all rumors with
a score of 1 or 2 as false, those with a score of 4 or 5 as true and the ones with
score of 3 as mixed or undetermined. Mixed rumors are those that are either a
mixture of false and true; all fact checking organizations we looked at have a few
categories that fall under this label.

It is not uncommon for a rumor to be investigated by multiple organizations.
We can use these cases to measure the agreement between various fact checking
proceedures across organizations. Table S1 shows the agreement between various
organizations’ verdicts. Note that all cases of disagreement were between “mix-
ture” and “mostly true” (scores 3 and 4) or “mixture” and “mostly false” (scores 3
and 2). We did not observe any disagreement between the organizations’ verdicts
for rumors that were “false” or “true.” In cases where we saw disagreements, we
assigned the veracity score based on the majority verdict.
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snopes politifact factcheck truthorfiction hoax-slayer
politifact 96%
factcheck 98% 97%
truthorfiction 95% 95% 96%
hoax-slayer 96% 95% 95% 97%
urbanlegends 95% 95% 95% 96% 97%

Table S1: Agreement between various rumor debunking websites.

S2.1.1 Rumor Topics

Most of the aforementioned rumor debunking organizations (henceforth referred
to as trusted organizations) already tag rumors with a topic (e.g., politics, terror-
ism, science, urban legends). Using these classifications, we divided the rumors
into seven overarching topics: Politics, Urban Legends, Business, Science and
Technology, Terrorism and War, Entertainment, and Natural Disasters. For ru-
mors that did not have a topic tag, or had multiple or uncertain tags, we asked
three annotators (political science undergraduates at MIT and Wellesley) to label
them using one of the seven topics. We showed the annotators several example
rumors from each of the categories and explained the topic hierarchy for classifi-
cation (for instances where a rumor might fall under more than one category). We
labeled the rumor based on the majority label. The Fleiss’ kappa (κ) for the anno-
tators was 0.93 (Fleiss’ kappa is a statistical measure of the reliability agreement
between annotators [52]). Table S2 shows the agreement amongst the annotators.
For 91% of the rumors there was agreement amongst all three annotators, the re-
maining 9% had agreement between two out of three annotators. There were no
rumors for which there was no agreement amongst at least two of the annotators.

Annotator 1 Annotator 2
Annotator 2 97%
Annotator 3 92% 93%

Table S2: Agreement between annotators on rumor topics. κ = 0.93
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S2.2 Twitter Data
We used our access to the full Twitter historical archives (which gives us access
to all tweets ever posted, going back to the first tweet) to collect all English-
language tweets that contained a link to any of the websites of the trusted fact
checking organizations, from September 2006 to December 2016. There were
500K tweets containing a link to these websites and we were interested in tweets
containing these links that were replies to other tweets. For each reply tweet,
we extracted the original tweet that they were replying to and then extracted all
the retweets of the original tweet. Each of these retweet cascades is a rumor
propagating on Twitter. We also know the veracity of each cascade, through the
reply that linked to one of the rumor investigating sites.

We took extreme care to make sure that the replies containing a link to any
of the trusted websites were in fact addressing the original tweet. We did this
through a combination of automatic and manual measures. First, we only con-
sidered replies that were directly targeting the original tweet, in other words, we
did not consider replies to replies, only replies to the original tweet. Second, we
compared the headline of the linked article to that of the original tweet. We also
removed all original tweets that were directly linking to one of the fact-checking
websites as we wanted to study how unverified and contested information spreads,
and tweets linking to one of the fact-checking websites do not qualify as they are
no longer unverified. Around 158K cascades passed this stage.

We then used ParagraphVec [53] and Tweet2Vec [54] algorithms to convert
the headline and the original tweet respectively to vectors that capture their se-
mantic content. We then used cosine similarity to measure the distance between
the vectors (we note that some tweets had images with text on them, therefore, we
used an OCR algorithm1 to extract the text from the images.) If the similarity was
lower than .5 the tweet was discarded, if it was higher than .5, but lower than .9, it
was manually inspected, if it was higher than .9 it was assumed to be correct. We
removed 10,331 cascades from our dataset through this process.

S2.2.1 Canonicalization

Once we had identified the rumor cascades that had been debunked/confirmed
through replies, we canonicalized them by identifying images and links to exter-
nal articles in the original tweets (root of the cascades). Images on Twitter also
have a url, however, there could be hundreds of different links for a given photo.

1https://ocr.space/
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Therefore, we passed each image to Google’s reverse image search to identify all
links that point to that image. Moreover, as mentioned earlier, we employed OCR
to identify the text in the images. Next, using the Twitter historical API, which
has full url and text search capabilities, we extracted all English-language origi-
nal tweets containing any of these urls (photos and external articles) or text, from
September 2006 to December 2016. Finally, we extracted all the retweets to these
tweets.

S2.2.2 Removing bots

As a last step, we used a state-of-the-art bot detection algorithm by Varol et al.
[55] to remove all accounts that were identified as bots.2 13.2% of the accounts
were identified as bots and were removed. Our bot analysis is explained in greater
detail in section S8.3 below.

S2.2.3 Approach to Tweet Deletion

As shown in previous work, tweet deletion may impact the results of rumor studies
on Twitter [56]. We therefore included all tweets that were made available to us
by the full Twitter historical archives. Since our data is anonymized and since we
have a direct relationship with Twitter, we can continue to include in our analysis
any tweet that was deleted after we received our data, which means our analysis
is less prone to errors from tweet deletions than other studies of rumor cascades
on Twitter.

S2.3 Dataset Summary
After all of the data processing, we were left with 126,285 rumor cascades cor-
responding to 2,448 rumors. Of the 126,301 cascades, 82,605 were false, 24,409
were true and 19,287 were mixed, corresponding to 1,699 false, 490 true and 259
mixed rumors. The earliest rumor cascades that we were able to identify were
from early October 2008 and the latest cascades were from late December 2016.
Figure 1b in the main text shows the complimentary cumulative distribution func-
tion (CCDF) (see section S10 for an explanation of the CCDF) of the number
of cascades for false, true and mixed rumors (Figure 1d shows this for political
rumors). Figure 1c in the main text shows the number of false, true and mixed

2The bot detection API can be found here: https://truthy.indiana.edu/botornot
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rumor cascades over time, from mid 2008 to the end of 2016 (Figure 1e shows
this for political rumors). Figure 1f in the main text shows the number of cascades
by topic.

We are aware that there may be a selection bias in the collection of our dataset
as we only consider rumors that were eventually investigated by a fact-checking
organization. To address this issue, we include a robustness check by looking
at human-identified stories (described later in this document). It may also be
that there is a bias towards stories that are of greater diffusion volume, even
in the robustness dataset. However, we argue this implies we are studying ru-
mors/stories that have at least a visible footprint on Twitter (i.e., they have been
picked up/shared by enough people to have an impact). So, while our robustness
dataset may under-sample stories that never diffused, our main sample is repre-
sentative of verified stories and our robustness sample is representative of stories
with a visible footprint on Twitter.

S3 Quantifying and Comparing Rumor Cascades

S3.1 Time-Inferred Diffusion of Rumor Cascades
Each of the retweet cascades described in section S2.2, corresponds to a rumor
cascade. The root of the cascade is the original tweet containing a rumor. All
other nodes in the cascade correspond to retweets of the original tweet. Since
each tweet and retweet is labeled with a timestamp, one can track the temporal
diffusion of messages on Twitter. However, the Twitter API does not provide the
true retweet path of a tweet. Figure S4a shows the retweet tree that the Twitter
API provides. As you can see, all retweets point to the original tweet. This does
not capture the true retweet tree since in many cases a user retweets another user’s
retweet, and not the original tweet. But as you can see in Figure S4a, all credit is
given to the user that tweeted the original tweet, no matter who retweeted whom.

Fortunately, we can infer the true retweet path of a tweet by using Twitter’s
follower graph. Figure S5 shows how this is achieved. The left panel in the figure
shows the retweet path provided by Twitter’s API. The middle panel shows that
the bottom user is a follower of the middle user but not of the top user (the user
who tweeted the original tweet). Finally, the right panel shows that using this
information, and the fact that the bottom user retweeted after the middle user, it
can be inferred that the bottom user retweeted the middle user and not the top
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user. If the bottom user was a follower of the top user, then the original diffusion
pattern shown in the left panel would stand (i.e., it would have been inferred that
both the middle and bottom users were retweeting the top user). This method
of reconstructing the true retweet graph, called time-inferred diffusion, is based
on work by Goel et al. [57] and is used to establish true retweet cascades in a
broad range of academic studies of Twitter. Using this method, we convert our
example retweet cascade shown in Figure S1a to a more accurate representation
of the retweet cascade, shown in Figure S4b. The cascade shown in Figure S4b,
is what we use to analyze the rumor cascades.

The follower-followee information is inferred at the time of the retweet. Since
the Twitter API returns follower-followee information in reverse chronological
order, combined with knowledge of when the users joined Twitter, one can prob-
abilistically infer the followership network of a user in the past. For instance, if
user U0 is followed by users U1, U2, and U3 (in this order through time) and users
U1, U2, and U3 joined Twitter on dates D1, D2, and D3, then we can know for cer-
tain that U2 was not following U0 before D1 and U2 was not following U0 before
min(D1, D2).

Note that we do not include quotes or replies in our propagation dynamics.
This is because, generally speaking, retweets (not quotes) do not contain addi-
tional information and represent people agreeing with what is being shared. We
do not include replies in our propagation analysis as we don’t know if the replies
are agreeing or disagreeing with the rumor. But we do analyze replies in other
ways (as shown in Figure 4d and 4e in the main text).

����

Time
����

Time

a b

Figure S4: A sample rumor cascade. Each node represents a user and the x-axis
is time. The Twitter symbol on the top left represents an original tweet and the
arrows represent retweets. The tree on the left shows the retweet cascade from
the Twitter API, the tree on the right shows the true cascade created using time-
inferred diffusion.
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Figure S5: Using Twitter’s follower graph to infer the correct retweet path of a
tweet. Panel (a) shows the retweet path provided by the Twitter API. Panel (b)
shows that the bottom user is a follower of the middle user but not that of the
top user (the user who tweeted the original tweet). Panel (c) shows that using
this information, and the fact that the bottom user retweeted after the middle user,
we can infer that the bottom person retweeted the middle person and not the top
person.

S3.2 Characteristics of Rumor Cascades

S3.2.1 Static Measures

We measured and compared four static characteristics of false, true and mixed
rumor cascades: depth, max-breadth, structural virality [23], and size (since on
Twitter a person can only retweet a tweet once, the size of a cascade corresponds
to the number of unique users involved in that cascade). Here we define each of
these measures.

Take an example rumor cascade shown in Figure S6a. The static measures are
not dependent on time, therefore, we can reorganize the cascade based on depth,
as seen in Figure S6b. Using this example, the definition of each of the four static
measures is described below.

1 1.67 2.542.48 1 2 14Breadth

0 1 32Depth

Structural 
Virality

1 3 87
Size/ 

Unique Users 

d

b

c

a

Time
a b

Figure S6: An example rumor cascade.

• Depth: The depth of a node is the number of edges from the node to the
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root node (in this case, the original tweet). The depth of a cascade is the
maximum depth of the nodes in the cascade. In other words, the depth of a
cascade, D, with n nodes is defined as:

D = max(di), 0 <= i <= n (S1)

Where di denotes the depth of node i. Figure S7a shows the depth mea-
surement for our example cascade. In this case the depth of the cascade is
3.

• Size/Unique Users: The size of a cascade corresponds to the number of
users in that cascade. As explained earlier, the size of a cascade corresponds
to the number of unique users involved in that cascade since users can only
retweet something once on Twitter. Figure S7b shows the size our example
cascade at different depths; the size of the full cascade is 8.

• Structural Virality: The structural virality of a cascade, as defined by Goel
et al. (2015), is the average distance between all pairs of nodes in a cascade.
For a cascade with n>1 nodes, the virality v is defined as:

v =
1

n(n− 1)

n∑
i=1

n∑
j=1

dij (S2)

Where dij denotes the length of the shortest path between nodes i and j.
Figure S7c shows the structural virality of our example cascade at different
depths. The structural virality of the full cascade is 2.54.

• Max-Breadth: The breadth of a cascade is a function of its depth. At each
depth, the breadth of a cascade is the number of nodes at that depth. As the
name suggests, the max-breadth of a cascade is its maximum breadth. For
a cascade with depth d, the max-breadth, B, is defined as:

B = max(bi), 0 <= i <= d (S3)

Where bi denotes the breadth of a cascade at depth i. Figure S7d shows
the breadth of our example cascade at each depth. The max-breadth of this
cascade is thus 4.
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Figure S7: Depth, size, structural virality and breadth calculated for a sample
cascade.

These four static measures were calculated for all cascades in our dataset. Fig-
ures 2a, 2b, 2c and 2d in the main text show the CCDF (see section S10 for an ex-
planation of the CCDF) of these measurements for false and true cascades. Below
we show the breakdown of these statistics for each veracity. Note that all standard
error (SE) values correspond to cluster-robust standard errors [58, 59], clustered
on rumors (i.e., cascades belonging to the same rumor are clustered together).
(An explanation of cluster-robust standard errors is provided in section S9.) Since
most of these measures have a heavy-tailed distribution, we logged our measure-
ments. Tables S3, S4, S5 and S6 below show the mean (log), the cluster-robust
standard errors (log) and the min and max of the depth, max-breadth, structural
virality, and size for false, true and mixed cascades (the tables show the mean and
SE of the logged data). For each of these measurements, we also ran two-sample
Kolmogorov-Smirnov (KS) tests to compare the distributions of these measures
between false and true cascades. The results of the tests are reported in the table
legends.
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N Mean (log) Robust-SE (log) Min Max
False 82,605 0.156 0.0135 0 24
True 24,409 0.099 0.0183 0 12
Mixed 19,287 0.083 0.0171 0 19

Table S3: Statistics on the depth of cascades. KS-test for false and true cascades:
D = 0.134, p ∼ 0.0

N Mean (log) Robust-SE (log) Min Max
False 82,605 0.289 0.0286 1 29,527
True 24,409 0.172 0.0401 1 1,559
Mixed 19,287 0.148 0.0331 1 11,783

Table S4: Statistics on the max-breadth of cascades. KS-test for false and true
cascades: D = 0.134, p ∼ 0.0

N Mean (log) Robust-SE (log) Min Max
False 31,858 0.188 0.0074 1.0 10.25
True 6,149 0.164 0.0196 1.0 5.72
Mixed 4,074 0.164 0.0167 1.0 10.07

Table S5: Statistics on the structural virality of cascades. KS-test for false and
true cascades: D = 0.107, p ∼ 0.0

N Mean (log) Robust-SE (log) Min Max
False 82,605 0.313 0.0305 1 46,895
True 24,409 0.186 0.0431 1 1,649
Mixed 19,287 0.160 0.0364 1 23,228

Table S6: Statistics on the size of cascades. KS-test for false and true cascades:
D = 0.134, p ∼ 0.0

S3.2.2 Dynamic Measures

We also measured four dynamic characteristics of the cascades: time vs depth,
time vs unique users (or size), max-breadth vs depth, and unique users vs depth.
As with the static measurements, here we also took the log of the data (for similar
reasons) and calculated all standard errors using a cluster-robust method (again,
clustering on the rumors). Below is a description of how each dynamic character-
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istic was calculated. Two of the dynamic measures are a function of time (depth
over time and unique users over time), while the other two are a function of depth
(breadth vs depth and unique users vs depth). Note that the figures depicting the
dynamic measures in the main text (Figures 2e-f and 3e-f) depict the geometric
mean; this is because we log the values to transform the data to a non-heavy-tailed
distribution to avoid infinite variance. To make the visualization more human-
readable, we then take the exponent of the mean and the SEM of the data, which
is the same as the geometric mean of the actual data.

• Depth over Time: For each cascade (e.g., the one shown in Figure S6a), we
measured the time it took to reach each depth in minutes. Figure S8a shows
depth over time being calculated for our sample cascade. For each depth,
we averaged these times across false, true and mixed cascades, producing
an average time (and standard error) for cascades to reach different depths,
as shown in Figure 2e in the main text.

• Unique Users over Time: For each cascade, we measured the time it took
to reach a certain number of unique users (which corresponds to cascade
size) in minutes. Figure S8b shows unique users over time being calculated
for our sample cascade. For each value, we averaged these times across all
false, true and mixed cascades, producing an average time (and standard
error) for cascades to reach different numbers of unique users, as shown in
Figure 2f in the main text.

• Breadth vs Depth: For each cascade, we measured the breadth at every
depth. Figure S9a shows breadth vs depth being calculated for our sample
cascade. For each depth, we averaged these values across all false, true and
mixed cascades, producing an average breadth (and standard error) for each
depth, as shown in Figure 2h in the main article.

• Unique Users vs Depth: For each cascade, we measured the number of
unique users at every depth. Figure S9b shows unique users vs depth being
calculated for our sample cascade. For each depth, we averaged these val-
ues across false, true and mixed cascades, producing an average number of
unique users (and standard error) for each depth, as shown in Figure 2g in
the main article.

Overall, we found statistically significant differences between false and true
cascades across all of our measures. In brief, false cascades tend to be more viral
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Figure S8: Time based dynamic characteristics: time vs depth and time vs unique
users, calculated for a sample cascade.

and spread farther, faster, deeper and more broadly than the truth for all categories
of information.

S4 Rumor Topics
As explained in section S2.1.1, each rumor is tagged with one of seven topics. As
much of the discourse on false news has been focused on politics, we were inter-
ested in the differences between political and nonpolitical rumors in particular as
well as the differences in diffusion dynamics across all categories more broadly.
We began by combining all nonpolitical rumors into one category in order to com-
pare political rumors to all other types of rumors. Of the 126,285 rumor cascades,
44,095 were political (27,600 false, 9,520 true, and 6,975 mixed) and 82,206 were
nonpolitical (55,005 false, 14,889 true, and 12,312 mixed).

We ran the same analysis explained in section S3.2 on the political and nonpo-
litical rumor cascades. Figure S10 shows the results. This is the same as Figure 3
in the main article, with the addition of the results for true rumor cascades. Tables
S7, S8, S9 and S10 below show the mean (log), the cluster-robust standard errors

20



a

0

4

0 3Depth

B
re

ad
th

b

0 1 32Depth

Breadth
1 2 14

0 1 32Depth

1 3 87Unique 
Users 

0

8

0 3Depth

U
ni

qu
e 

U
se

rs

Figure S9: Depth based dynamic characteristics: breadth vs depth and unique
users vs depth, calculated for a sample cascade.

(log), min and max of the depth, max-breadth, structural virality, and size for false,
true and mixed political and nonpolitical cascades (the tables show the mean and
SE of the logged data). We also ran two-sample Kolmogorov-Smirnov (KS) tests
to compare the distributions between political and non-political cascades. The
results of these tests are reported in the table legends.

Overall, we found statistically significant differences between false and true
cascades within and between each rumor type across all of our measures. Political
cascades (both true and false) tend to be more viral, spread faster and deeper and
reach more unique users than nonpolitical rumors.

We also disaggregated the false rumor cascades and compared all 7 categories.
Alhough the data are noisier when we disaggregate the categories (as is expected
since the number of data points in each category is smaller), it is still clear that
“Politics” spreads farther, faster, deeper and more broadly on most measures. Ta-
bles S11, S12, S13, and S14 below show the means (log), cluster-robust standard
errors (log), min and max of the depth, max-breadth, structural virality, and size
of false cascades across the different categories (the tables show the mean and SE
of the logged data). We also ran two-sample Kolmogorov-Smirnov (KS) tests to
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Figure S10: Difference between political and non-political rumor cascades.

N Mean (log) Robust-SE (log) Min Max
False-political 27,600 0.258 0.0166 0 24
True-political 9,520 0.149 0.0525 0 12
Mixed-political 6,975 0.093 0.0219 0 9
False-nonpolitical 55,005 0.104 0.0094 0 17
True-nonpolitical 14,889 0.067 0.0118 0 10
Mixed-nonpolitical 12,312 0.078 0.0242 0 19

Table S7: Statistics of the depth of political and nonpolitical cascades. KS for
false cascades: D = 0.362, p ∼ 0.0. KS for true cascades: D = 0.194, p ∼ 0.0

N Mean (log) Robust-SE (log) Min Max
False-political 27,600 0.498 0.0380 1 23,243
True-political 9,520 0.269 0.1214 1 1,521
Mixed-political 6,975 0.175 0.0642 1 4,971
False-nonpolitical 55,005 0.185 0.0200 1 29,527
True-nonpolitical 14,889 0.111 0.0247 1 1,559
Mixed-nonpolitical 12,312 0.132 0.0406 1 11,783

Table S8: Statistics of the max-breadth of political and nonpolitical cascades. KS
for false cascades: D = 0.362, p ∼ 0.0. KS for true cascades: D = 0.194, p ∼ 0.0

compare the distributions between political and all other topics. The results of
these tests are reported in the captions of the tables. As can be seen in the tables,
false political rumors significantly “outperform” false rumors of other categories
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N Mean (log) Robust-SE (log) Min Max
False-political 17,295 0.212 0.0072 1.0 10.25
True-political 3,524 0.188 0.0340 1.0 5.72
Mixed-political 1,651 0.167 0.0362 1.0 4.93
False-nonpolitical 14,563 0.159 0.0114 1.0 7.86
True-nonpolitical 2,625 0.132 0.0187 1.0 5.40
Mixed-nonpolitical 2,423 0.163 0.0147 1.0 10.07

Table S9: Statistics of the virality of political and nonpolitical cascades. KS for
false cascades: D = 0.194, p ∼ 0.0. KS for true cascades: D = 0.218, p ∼ 0.0

N Mean (log) Robust-SE (log) Min Max
False-political 27,584 0.540 0.0392 1 46,895
True-political 9,520 0.292 0.1304 1 1,649
Mixed-political 6,975 0.188 0.0687 1 5,075
False-nonpolitical 55,005 0.199 0.0216 1 35,016
True-nonpolitical 14,889 0.119 0.0269 1 1,647
Mixed-nonpolitical 12,312 0.144 0.0451 1 23,228

Table S10: Statistics of the size of political and nonpolitical cascades. KS for
false cascades: D = 0.362, p ∼ 0.0. KS for true cascades: D = 0.194, p ∼ 0.0

in terms of the speed, breadth, and depth of their diffusion. Figure S11 shows the
diffusion measurements for each topical category seperately. The results are quite
interesting. For example, news about politics, urban legends and entertainment
spread to the most people, while rumors about politics and urban legends spread
the fastest and are the most viral (in terms of their structural virality).

S5 Characteristics of Users
Next, we analyzed the characteristics of users involved in spreading rumors to see
if there were differences across the characteristics of users involved in spreading
true and false rumors that could explain differences in the spread of these rumors.
For each user, we looked at five factors that could be extracted from the Twitter
API:

• Followers: Number of people who follow the user on Twitter.
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Figure S11: Difference between false rumor cascades of different topics.

N Mean (log) Robust-SE (log) Min Max
Politics 27,600 0.258 0.0166 0 24
Urban Legends 16,458 0.083 0.0091 0 17
Science & Tech 12,043 0.071 0.0111 0 17
Business 11,086 0.092 0.0087 0 15
Terrorism & War 8,054 0.211 0.0282 0 16
Entertainment 6,046 0.116 0.0153 0 15
Natural Disasters 1,318 0.074 0.0276 0 7

Table S11: Statistics of the depth of false cascades across different categories.
Politics vs Terrorism & War: D = 0.094, p ∼ 0.0; Politics vs Science & Tech:
D = 0.456, p ∼ 0.0; Politics vs Urban Legends: D = 0.427, p ∼ 0.0; Politics vs
Entertainment: D = 0.333, p ∼ 0.0; Politics vs Business: D = 0.363, p ∼ 0.0;
Politics vs Natural Disasters: D = 0.439, p ∼ 0.0

• Followees: Number of people who the user follows on Twitter.

• Verified: Whether the user’s account has been officially verified by Twitter.3

• Account age: The age of the user’s account, measured in days.

• Engagement: This measures how active a user has been on Twitter since

3https://support.twitter.com/articles/119135
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N Mean (log) Robust-SE (log) Min Max
Politics 27,600 0.498 0.0380 1 23,243
Urban Legends 16,458 0.156 0.0237 1 29,527
Science & Tech 12,043 0.151 0.0311 1 20,998
Business 11,086 0.130 0.0146 1 20,147
Terrorism & War 8,054 0.355 0.0653 1 7,296
Entertainment 6,046 0.214 0.0411 1 6,829
Natural Disasters 1,318 0.129 0.0671 1 1,363

Table S12: Statistics of the max-breadth of false cascades across different cate-
gories. Politics vs Terrorism & War: D = 0.120, p ∼ 0.0; Politics vs Science &
Tech: D = 0.456, p ∼ 0.0; Politics vs Urban Legends: D = 0.427, p ∼ 0.0; Poli-
tics vs Entertainment: D = 0.333, p ∼ 0.0; Politics vs Business: D = 0.375, p ∼
0.0; Politics vs Natural Disasters: D = 0.439, p ∼ 0.0

N Mean (log) Robust-SE (log) Min Max
Politics 17,295 0.212 0.0071 1.0 10.25
Urban Legends 3,281 0.175 0.0148 1.0 7.86
Science & Tech 2,056 0.178 0.0181 1.0 6.28
Business 2,919 0.094 0.0093 1.0 5.95
Terrorism & War 8,054 0.185 0.0131 1.0 6.28
Entertainment 1,774 0.153 0.0167 1.0 6.47
Natural Disasters 247 0.155 0.0538 1.0 4.44

Table S13: Statistics of the virality of false cascades across different categories.
Politics vs Terrorism & War: D = 0.082, p ∼ 0.0; Politics vs Science & Tech:
D = 0.171, p ∼ 0.0; Politics vs Urban Legends: D = 0.181, p ∼ 0.0; Politics vs
Entertainment: D = 0.229, p ∼ 0.0; Politics vs Business: D = 0.381, p ∼ 0.0;
Politics vs Natural Disasters: D = 0.240, p ∼ 0.0

joining. The Engagement, E, is calculated by the following equation:

E =
T +R + P + F

A
(S4)

Where T , R, P , and F denote the number of tweets, retweets, replies and
favorites by the user, respectively and A denotes the user account’s age in
days.
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N Mean (log) Robust-SE (log) Min Max
Politics 27,600 0.540 0.0392 1 46,895
Urban Legends 16,458 0.169 0.0257 1 34,919
Science & Tech 12,043 0.160 0.0330 1 31,342
Business 11,086 0.139 0.0161 1 23,719
Terrorism & War 8,054 0.387 0.0681 1 13,727
Entertainment 6,046 0.229 0.0438 1 13,574
Natural Disasters 1,318 0.137 0.0729 1 1,631

Table S14: Statistics of the size of false cascades across different categories. Pol-
itics vs Terrorism & War: D = 0.119, p ∼ 0.0; Politics vs Science & Tech:
D = 0.454, p ∼ 0.0; Politics vs Urban Legends: D = 0.427, p ∼ 0.0; Politics vs
Entertainment: D = 0.333, p ∼ 0.0; Politics vs Business: D = 0.384, p ∼ 0.0;
Politics vs Natural Disasters: D = 0.439, p ∼ 0.0

We analyzed the difference between these factors for users involved in false
and true cascades. Overall, there were 3,525,344 users (2,725,269 unique) in-
volved in the false cascades, 202,348 users (170,918 unique) involved in the true
cascades and 307,043 users (214,797 unique) involved in the mixed cascades (to-
tal of 3,092,984 unique users across all veracities). Figure 4a in the main article
shows the breakdown of the user characteristics for false and true rumors. Even
though there are slight differences between the characteristics of users involved in
spreading false and true rumors, the differences should in fact favor the spread of
true rumors (by favor here we mean these differences should drive greater virality,
speed, depth and reach for true rumors), as the users spreading those have in gen-
eral more followers, are more likely to be verified and are more active on Twitter.
Therefore, these factors cannot be driving the differences we observe between true
and false rumor cascades (we expand on this in the next section).

S5.1 Analysis of Rumor-Starters
We also passed the user accounts of the rumor starters to a Twitter demographic
classifier [60], to infer the gender of the users who start false and true rumors.
We found no difference between the gender distribution of false and true rumor
sharers (ks-test: D=0.0182, p= 0.320), with false rumor starters being 56% male,
25% female and 19% other (organizations, websites, etc). True rumor starters
were 55% male, 27% female and 18% other.

26



We also looked at the unique number of users responsible for starting false
and true rumors. Overall, the 82,605 false cascades were started by 63,293 unique
users and the 24,409 true cascades were started by 20,266 unique users. Figure
S12 below shows the CCDF of the number of false and true rumors started by
unique users. Note that the distribution is very heavy-tailed. As can be seen from
the figure, a great majority of users ( 94%) start only a single rumor (both false
and true), and less than 1% of users start more than 10 rumors. The most false
cascades started by a user was 4,717 and the most number of true cascades started
by a user was 928.

False
True

Figure S12: CCDF of number of false and true rumors started by unique users.

Another way to visualize these patterns is shown in Figure S13 below. As
can be seen, in the figure, the top false rumor starter is responsible for 6% of all
false rumor cascades and the top true rumor starter is responsible for 4% of all
true rumor cascades. The top 10 false rumor starters are responsible for 12% of
rumors started and the top 10 true rumor starters are responsible for 9% of rumors
started. The figure shows a “knee” for both false and true rumors at around y=20.
That point shows that 20% of all false rumor cascades are started by 1.7% (1,057)
of the users and 20% of all true rumor cascades are started by 3.9% (940) of
the users. Though not directly comparable with Gupta et al. [61], since they
only looked at the retweets of fake images during hurricane Sandy, our results do
show that a relatively small percentage of users are responsible for starting a large
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number of rumor cascades and that this is slightly more true of false rumors than
true rumors, however we hesitate to draw any dramatic conclusions from these
observations.

False
True

Figure S13: Cumulative plot of percent of false and true rumors started by differ-
ent users.

S6 The Effect of Veracity on the Probability of
Retweeting

As we showed in section S5, the difference between the spread of true and false
rumors cannot be driven by the characteristics of users. Thus, we hypothesized
that the veracity of a rumor has an effect on the probability of it being spread. To
test this hypothesis we estimated a user-level logistic regression model of retweet-
ing behavior as a function of falsehood and all of the user characteristics described
in section S4, as follows:

logit(pretweet) = β0 + β1F + β2µ0 + β3µ1 + β4µ2 + β5µ3 + β6µ4 (S5)
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Where:

• pretweet is the probability of a retweet of a rumor.

• β0 is the intercept.

• β1, β2...β6 are the coefficients (effects) of each of the parameters.

• µ0, µ1...µ4 are the user parameters (followers, followees, age, engagement,
and verified).

• F is the falsehood of the rumor (1 if false, otherwise 0).

The model was estimated on 3,724,197 observations (impressions of a rumor
comprising instances in our dataset where there could have been a retweet of a
rumor). The results of the logistic regression are shown in Figure 4b in the main
article. As shown in that figure, all the parameters had a statistically significant
effect on the probability of a retweet, though, except for two factors, the effect
size of all the parameters were small. The two factors with the largest effect
sizes were whether the user was verified, followed by the falsehood of the rumor.
Both effects were positive, meaning that they both increased the probability of a
retweet. They had coefficients of 1.4261 and 0.5350 respectively, corresponding
to odds ratios of 4.1625 and 1.7075, implying that, all else equal, a false tweet is
70% more likely to be retweeted than a true or mixed tweet.

S7 Measuring Emotional Responses and Rumor
Novelty

Having shown that the probability of a rumor being retweeted is higher for false
rumors, even after controlling for user characteristics, we hypothesized that there
might be psychological reasons behind the differences between the spread of true
and false rumors. Specifically, we hypothesized that false rumors tend to be more
novel and surprising compared to true rumors. In order to test this hypothesis,
we ran two analyses: 1) We measured the emotional content of the replies to the
tweets containing rumors. 2) We compared the information contained in the rumor
tweets to other information the users were exposed to on Twitter. We explain both
analyses in detail below.
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S7.1 Measuring Emotions in Responses to Rumors
As mentioned in section S2.2, a sizeable number of tweets containing rumors have
replies associated with them (these are people replying to the tweet). To be more
specific, 18,645 false rumors and 3,499 true rumors were replied to. We collected
all the replies using our full access to the Twitter historical API. We categorized
the emotions conveyed in these replies using the emotional lexicon collected and
curated by the National Research Council of Canada (NRC). There are two manu-
ally curated datasets provided by the NRC, the first contains a comprehensive list
of 141,820 English words and their associations with eight emotions: anger, fear,
anticipation, trust, surprise, sadness, joy, and disgust [32][62]. These eight emo-
tions are based on Plutchik’s work on basic emotions [31]. The second dataset
contains a list of 32,389 Twitter hashtags and their weighted associations with the
same emotions [33] [63]. Both datasets have been manually curated and evaluated
by the authors.

The reply tweets to a tweet are cleaned (cleaning entailed removing urls, user-
names, stopwords, and correcting misspellings) and tokenized using Python’s Nat-
ural Language Toolkit (NLTK) [64]. The cleaned tokens were then compared
against the word and hashtag emotional dictionaries. It is possible (and likely)
that there are multiple “hits” to different emotions, in these cases the scores are
distributed between the emotions based on the number of hits. For example, it is
possible for replies to a tweet to be 20% sadness, 50% surprise and 30% fear. If
there was no match between the tokens and the dictionaries, the emotion is clas-
sified as miscellaneous. The emotional scores for false and true rumors are then
aggregated and averaged to produce a mean and a standard error for each emotion.
Figures 4d and 4f in the main article show the emotion scores for false and true
rumors. Note that here, as with previous sections, we used cluster-robust standard
errors (clustered on rumors). We found false rumors inspired replies expressing
greater surprise (k-s test = .205, p ∼ 0.0), corroborating the novelty hypothesis,
and greater disgust (k-s test = .102, p ∼ 0.0), while the truth inspired replies that
expressed greater sadness (k-s test = .037, p ∼ 0.0), anticipation (k-s test = .038,
p ∼ 0.0), joy (k-s test = .061, p ∼ 0.0) and trust (k-s test = .060, p ∼ 0.0) (Fig 4d
and f in the main text).

We also used the linguistic inquiry and word count framework (LIWC) [65] to
score replies based on assent and dissent words (as a proxy for agreement and dis-
agreement). The LIWC scores (which correspond to the percentage of total words
that match each of the categories) for assent and dissent in replies to false and true
rumors are shown in Figure S14 below. You can see that that there is more dissent
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than assent in the replies. There is not a statistically significant difference between
assent words in replies to true and false rumors. However, there is a significant
difference for dissent words, with false rumors having 13% more dissent words
(ks-test D=0.07, p 0.0). We do not make any claims or generalizations about this,
however, as the fraction of assent and dissent words in replies is so low (only mak-
ing up between .5% and 2.8% of the total words in replies). Though this is not
directly comparable with the work of Mendoza et al. [66] (since they study ru-
mors during breaking news events), our finding, that false rumors tend to generate
more disagreement, agrees with their findings (though the signal is much weaker
in ours). In a related work, Zeng et al. [67] also looked at the diffusion of speed
of rumor-denying and rumor-affirming posts during a hostage crisis event and
found that rumor-denying posts spread faster than rumor-affirming posts. Though
this work does not analyze rumor affirmation and denial (other than the analysis
shown in Figure S14, this is a rich area of research that should be looked at in
future research.

0 .5 1 1.5 2 2.5 3
LIWC Score

Dissent

Assent

Figure S14: The fraction of assent and dissent words in replies to false and true
rumors.

S7.2 Measuring the Novelty of Rumors
In order to measure the novelty of the information contained in the rumors, we
randomly selected a subset of users involved in the propagation of true and false
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rumors to match the prevalence of users in each type of cascade in our dataset
(3,870 unique users involved in spreading false rumors and 899 unique users in-
volved in spreading true rumors). We then randomly sampled 24,577 tweets that
these 4,769 unique users were exposed to in the 60 days prior to them propagating
(retweeting) one of the rumors (these are tweets posted by people the users fol-
lowed at the time). Since we sampled the tweets that the users were exposed to,
we are approximating what the user may have been exposed to.

Next, we calculated the information distance between the background tweets
and the rumor tweets. To do so, we used a Latent Dirichlet Allocation (LDA)
topic model [27] and trained on 10M English-language tweets and specifying 200
topics. Since we are dealing with tweets, we used a variant of LDA designed
specifically to deal with tweets [68]. We then ran the trained LDA model on the
4,769 rumor retweets and the 24,577 background tweets (as mentioned earlier,
OCR was used to extract text from images when applicable). This generated a
probability distribution over the 200 topics for each of the tweets in our dataset.

Next, for each user, we compared the topic distribution of their rumor retweet
and the topic distribution of the background tweets to which that particular user
was exposed in the 60 days before being exposed to the rumor tweet. We used
three metrics for this comparison: information uniqueness [69], KL-divergence
[70] and the Bhattacharyya distance [30]. Below we explain how each of these
metrics is calculated. Figure S15 shows a simplified illustration of the three steps
involved in measuring novelty.

• Information Uniqueness (IU): IU measures the distance of topic distribu-
tions between two documents using cosine similarity. The formula for cal-
culating IU is:

IU(Γr,Γb) = 1− cos(Γr,Γb) (S6)

Where Γr and Γb correspond to the topic distribution of a retweeted rumor
tweet and the background tweets respectively, and cos refers to the cosine
similarity function. The higher the IU , the more unique or novel is Γr

compared to Γb.

• KL-divergence (KL): KL is a measure of how one probability distribution
diverges from a second expected probability distribution [71]. In our case,
the two probability distributions correspond to the topic distributions of a
retweeted rumor and the background tweets. The formula for calculating
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Figure S15: An illustration of the process through which the novelty of rumors
is assessed: (a) a random selection of users involved in rumor propagation, (b) a
random selection of tweets from the people the selected user followed in the 60
days prior to their retweet of the rumor tweet, (c) novelty is measured by compar-
ing the tweet containing the rumor and the selected background tweets from the
last 60 days.

KL-divergence from discrete probability distributions Q to P is:

DKL(P ‖ Q) =
∑
i

P (i)log(
P (i)

Q(i)
) (S7)

KL-divergence is not symmetric, however we can create a symmetric metric
for measuring the divergence using the following formula:

KL(Γr,Γb) =
DKL(Γr ‖ Γb) +DKL(Γb ‖ Γr)

2
(S8)

Where Γr and Γb correspond to the topic distributions of a retweeted rumor
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tweet and the background tweets respectively; P (i) and Q(i) in Equation
S7 correspond to individual topics in Γr and Γb. As with all our other calcu-
lations, we again used cluster-robust standard errors, clustered on rumors.
Lower KL indicates lower divergence between the two documents, there-
fore, the higher the KL, the more unique or novel is Γr compared to Γb.

• Bhattacharyya Distance (BD): BD measures the dissimilarity between two
probability distributions. The formula for calculating BD is:

BD(Γr,Γb) = −ln(
∑
x∈X

√
Γr(x)Γb(x)) (S9)

Where Γr and Γb correspond to the topic distribution of a retweeted rumor
tweet and the background tweets respectively; X corresponds to the set
of 200 topics. The higher the BD, the more distance between the topic
distributions in Γr and Γb.

After calculating these three novelty metrics, we aggregated and averaged the
scores for false and true rumors to produce a mean and a standard error for each of
the novelty metrics. Figures 4c and 4e show the results. There were statistically
significant differences between true and false rumors for all three novelty scores.
False rumors had significantly higher IU , higher KL, and higher BD, indicating
greater novelty compared to true rumors. As with all of our other calculations, the
standard errors reported in the figures are cluster-robust standard errors, clustered
on rumors.

S7.3 Evaluating LDA
We evaluated our LDA models using a Tweet semantic similarity tool called
Tweet2Vec [54]. Tweet2Vec, which uses recent advances in deep neural networks,
was designed specifically to be robust to the short text, noise and misspellings
commonly found on Twitter. Tweet2Vec, which creates semantic embeddings
for tweets, was evaluated using data from recent SEMEVAL competitions dur-
ing which it outperformed the winners of the competition in the tweet semantic
similarity task (see [54] for more detail).

To further evaluate our LDA model, we first labelled each tweet using the most
prominent topic in that tweet’s LDA topic distribution (called hard-labelling). We
then used Tweet2Vec to generate semantic embeddings for each tweet. Next we
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created a fully connected graph with each tweet being a node and the weights of
the edges set to the cosine similarity between the tweet embeddings. We then
use the Louvain community detection algorithm [72] to cluster this graph. So
each tweet belongs to a cluster based on the outcome of the Louvain clustering
on Tweet2Vec embeddings (called C) and has a label based on its LDA topic
distribution (called L). There was a high correlation between the labels L and the
cluster-ids C (Pearson r = 0.63, p 0.001).

This analysis independently verifies that tweets that are hard-labelled with the
same topic by our LDA model are semantically much more similar to each other
than to tweets assigned to different topics. We used Tweet2Vec for evaluating
the LDA models because (i) it is specifically designed for Twitter and its idiosyn-
crasies with regard to short text length, jargon and misspellings, (ii) it is a com-
pletely different technique than LDA, and thus can serve as a good robustness
check to our topic modeling.

S8 Robustness Analysis
We employed several techniques to ensure the robustness of our analysis. First,
we used cluster-robust standard errors for all of our analysis to account for within-
cluster (i.e. rumor-level) error correlations (see section S9 for more information
on this). Second, to address a possible selection bias in examining only fact
checked rumors, we collected, curated and independently fact checked a second
dataset of rumors that had never been assessed by any of our fact checking orga-
nizations (see section S8.1 below for more detail). Third, to assess the potential
effects of bots on our analysis, we used a state-of-the-art bot detection algorithm
to identify and remove bot accounts (see section S8.3) and then compared re-
sults both with and without bot traffic (see section S8.3.2). Fourth, we tested the
robustness of our bot detection methods by a) comparing our results to those pro-
duced by using a second, independent bot detection algorithm and b) testing the
sensitivity of our analysis to different bot detection thresholds.

S8.1 Robustness: Selection Bias
As mentioned in section S2.1, the rumors in our analysis represent the entire
sample of fact checked rumors from six fact checking organizations such as
snopes.com (amongst others). To validate our results and generalizations and to
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assess our vulnerability to selection bias, we manually collected a second dataset
of rumors that were not investigated by any of the six fact checking organiza-
tions. These rumors were collected by three undergraduate students at MIT and
Wellesley College. We instructed the students on how to detect and investigate
the rumors. First, we employed a system that detects stories spreading on Twit-
ter [73], running the system on English-language tweets from June to December
2016. We ran the system until it had detected 300 unique rumors (we picked a
relatively low threshold because each of these rumors had to be investigated man-
ually). The system reached this threshold after analyzing around 3 million original
tweets (i.e., not counting retweets). We then asked the student annotators to in-
vestigate these rumors. Some of what the system had detected as rumors ended
up not being rumors (false positives), or were already investigated by one of the
fact checking organizations; these were discarded (131 were discarded). Overall,
there were 169 unique rumors, corresponding to 13,240 rumors cascades (7,979
false, and 5,261 true). These were investigated by the student annotators. The
annotators worked independently of each other (in fact they were not aware of
each other), and were asked to score the rumors as true, false or mixed. The an-
notators investigated all 169 rumors with a Fleiss’ kappa (κ) of 0.88. Table S15
below shows the inter-annotator agreement. Figure S16a shows the CCDF of the
number of cascades for false and true rumors in our robustness dataset. As can
be seen, the number of cascades per rumor in our robustness dataset is fairly even
between false and true rumors. The three annotators all agreed on the veracity
score for 90% of the rumors. We used these 11,099 rumors cascades (6,291 false,
and 4,808 true) for which we had unanimity in the veracity labels as our first ro-
bustness check. We then expanded the dataset to include majority rule veracity
labeling. Figure S16b shows the CCDF of the number of cascades for false and
true rumors in our robustness dataset.

Annotator 1 Annotator 2
Annotator 2 90%
Annotator 3 92% 95%

Table S15: Agreement between annotators on veracity of rumors. κ = 0.88
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Figure S16: CCDF showing the number of cascades for false and true rumors in
the robustness dataset. (a): all rumors, (b): rumors whose veracity was agreed
upon by all three annotators.

S8.2 Analysis of Selection Bias
We ran the analysis described in section S3 on the two robustness datasets de-
scribed above (unanimity labeling and majority-rule labeling) to see if our findings
generalize to all rumors on Twitter. Figure S17 shows the results of our analysis
on the unanimity labelled rumors and Figure S18 shows the same analysis for the
majority-rule labelled rumors. The figures are analogous to Figure 2 in the main
text. As with Figure 2, we show the cluster-robust standard errors in both Figures,
S17 and S18. As can be seen, we found the same differences in the spread of true
and false rumors in both robustness datasets as we did in our main analysis. This
provides reassuring evidence that our analysis is not being affected by a selection
bias from only examining fact checked rumors.

Tables S16, S17, S18 and S19 below show the mean (log), the cluster-robust
standard errors (log) and the max and min of the depth, max-breadth, structural
virality, and size for false and true rumors in the two robustness datasets (the tables
show the mean and SE of the logged data). For each of these measurements, we
also ran two-sample Kolmogorov-Smirnov (KS) tests to compare the distribution
of these measures between false and true rumors cascades in each of the datasets.
The results of the tests are reported in the table legends. Note that structural
virality is only defined for cascades of sizes greater than one (this explains the
smaller N in Table S18 compared to the other tables).
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Figure S17: Difference between false and true rumor cascades in the validity
dataset with unanimous labeling.
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Figure S18: Difference between false and true rumor cascades in the validity
dataset with majority rule labeling.

N Mean (log) Robust-SE (log) Min Max
False-Unanimity 7,979 0.103 0.0068 0 8
True-Unanimity 5,261 0.058 0.0056 0 5
False-Majority Rule 6,291 0.115 0.0081 0 8
True-Majority Rule 4,809 0.058 0.0060 0 5

Table S16: Statistics on the depth of cascades. KS-test for false and true cascades
for Unanimity: D = 0.108, p ∼ 0.0 and Majority Rule: D = 0.139, p ∼ 0.0.
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N Mean (log) Robust-SE (log) Min Max
False-Unanimity 7979 0.152 0.0102 1 1,075
True-Unanimity 5261 0.082 0.0088 1 128
False-Majority Rule 6,291 0.169 0.0125 1 1.075
True-Majority Rule 4,809 0.081 0.0094 1 66

Table S17: Statistics on the max-breadth of cascades. KS-test for false and true
cascades for Unanimity: D = 0.108, p ∼ 0.0 and Majority Rule: D = 0.139,
p ∼ 0.0.

N Mean (log) Robust-SE (log) Min Max
False-Unanimity 2,142 0.149 0.0059 1.0 4.068
True-Unanimity 846 0.125 0.0077 1.0 3.185
False-Majority Rule 1,876 0.148 0.0065 1 4.068
True-Majority Rule 764 0.126 0.0084 1 3.185

Table S18: Statistics on the structural virality of cascades (of size 2 or greater).
KS-test for false and true cascades for Unanimity: D = 0.066, p ∼ 0.0095 and
Majority Rule: D = 0.063, p ∼ 0.0243.

N Mean (log) Robust-SE (log) Min Max
False-Unanimity 7,979 0.165 0.0117 1 1,565
True-Unanimity 5,261 0.088 0.0097 1 128
False-Majority Rule 6,291 0.183 0.0143 1 1,565
True-Majority Rule 4,809 0.087 0.0104 1 83

Table S19: Statistics on the size of cascades. KS-test for false and true cascades
for Unanimity: D = 0.100, p ∼ 0.0 and Majority Rule: D = 0.131, p ∼ 0.0.

S8.3 Robustness: Bot Traffic
The prevalence of bots on Twitter has been well studied [74, 75] and we wanted
to ensure that our conclusions were robust to the presence of bots. We approached
this problem in two ways. First, as explained in section S2.2.2, we used a bot-
detection algorithm to identify and remove all accounts operated by bots. All
analyses reported in the paper were conducted on a bot-free dataset. Second, we
measured the effects of bots on our analysis by reanalyzing the data using all
accounts (including the detected bots) and comparing the results to our original
analysis.
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S8.3.1 Detecting Bots

As explained in section S2.2.2, we used a state-of-the-art bot detection algorithm
developed by Varol et al. [55], called BotOrNot to identify and remove bot ac-
counts from our dataset. There is a publicly available API implemented by the
authors that allows anyone to query a Twitter account.4 The API returns a bot-
likelihood score, between 0 and 1. We removed all accounts that had a bot-
likelihood score of .5 or higher, which corresponded to 13.2% of the accounts.
The threshold of .5 was recommended by the authors of the bot detection al-
gorithm [55]. At this value, almost all “simple” bots and a large percentage of
“sophisticated” bots get captured with a very small percentage of false positives.

BotOrNot uses more than 1,000 features from an account. These features fall
under 6 main categories: network, user, friends, temporal, content, and sentiment.
The network features relate to information diffusion patterns, the user features
capture the account meta-data provided by Twitter, the friends features capture
various aspects of the account’s social graph, temporal features capture the tim-
ing patterns of the activity of the account, the content features are based on the
linguistic cues in the tweets posted by the account, and finally sentiment features
capture the emotions conveyed in the account’s tweets. The algorithm was trained
on 31K manually verified accounts (15K bot and 16K legitimate accounts), using
a Random Forrest classifier. According to Varol et al., the algorithm has an AUC
(Area Under ROC Curve) of 0.95, measured via cross validation.

Figure S19a shows the distribution of the bot-likelihood scores for all the ac-
counts. The percentage of the accounts identified as bots (bot-likelihood score >
.5) were fairly evenly divided between false and true rumors, with a slight skew
towards false rumors. Overall, 14.0% of the accounts in false rumors and 10.0%
of the accounts in true rumors were identified as bots. Figure S19b shows the dis-
tribution of the bot-likelihood score for accounts involved in false and true rumors.
As can be seen, the two distributions look very similar, but they are in fact statis-
tically different from each other (shown using a KS-test: D = 0.107, p ∼ 0.0).
Figure S20 shows the CCDF of the bot-likelihood scores of accounts involved in
false and true rumor cascades. These results indicate that bots are slightly more
likely to participate in the spread of false rumors than in the spread of true rumors,
but they do not address whether the added velocity and depth of the spread of false
rumors can be attributed to the presence of bots.

4https://truthy.indiana.edu/botornot/
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Figure S19: The bot-likelihood distribution of (a) all accounts, and (b) accounts
involved in false and true cascades.
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Figure S20: CCDF showing the bot-likelihood distributions for accounts involved
in false and true rumors.

S8.3.2 Analysis

In order to better understand the potential effects of bots in our analysis, we ran
the analysis described in section S3 on our full dataset (including the bot traffic
that was excluded from the main analysis).

Tables S20, S21, S22, and S23 below show the mean (log), the cluster-robust
standard errors (log) and the min and max of the depth, max-breadth, structural
virality, and size for false and true rumors. For each of these measurements, we
also ran a two-sample Kolmogorov-Smirnov (KS) test to compare the distribution
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of these measures between false and true cascades. The results of the tests are
reported in the caption of the tables. Note that as before, structural virality is
only defined for cascades of size two or greater (thus the lower N in Table S22
compared to other tables).

There are three takeaways from this analysis: first, though the removal of bots
did affect the results, all findings regarding the differences between true and false
rumor cascades hold, even when bots are not removed. Second, the dataset with
bots scores higher on all measures (e.g., depth and size) for both true and false
cascades when compared to the dataset without bots. This indicates that bots are
accelerating the spread of both true and false rumors. Removing bots decreased
cascade size by ∼26%, depth by ∼21%, max-breadth by ∼26% and structural
virality by ∼9%. Third, however, there are no meaningful differences between
the increases in diffusion attributable to bots across true and false cascades. These
findings imply that the presence of bots is not driving our results since they seem
to effect true and false cascades similarly. The results also imply that false news
spreads farther, faster, deeper and more broadly than the truth because humans,
not robots, are more likely to spread it.

N Mean (log) Margin (%) Robust-SE (log) Min Max
False 101,179 0.197 -21% 0.0172 0 25
True 28,985 0.126 -21% 0.0316 0 12

Table S20: Statistics on the depth of cascades, including bots. The margin shows
the difference when bots are removed. KS-test for false and true cascades: D =
0.162, p ∼ 0.0

N Mean (log) Margin (%) Robust-SE (log) Min Max
False 101,179 0.391 -26% 0.0372 1 31,279
True 28,985 0.228 -25% 0.0686 1 1,717

Table S21: Statistics on the max-breadth of cascades, including bots. The margin
shows the difference when bots are removed. KS-test for false and true cascades:
D = 0.162, p ∼ 0.0
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N Mean (log) Margin (%) Robust-SE (log) Min Max
False 48,717 0.206 -9% 0.0064 1.0 10.51
True 9,251 0.181 -9% 0.0236 1.0 5.84

Table S22: Statistics on the structural virality of cascades (of size 2 or greater),
including bots. The margin shows the difference when bots are removed. KS-test
for false and true cascades: D = 0.103, p ∼ 0.0

N Mean (log) Margin (%) Robust-SE (log) Min Max
False 101,179 0.419 -26% 0.0389 1 49,097
True 28,985 0.246 -24% 0.0725 1 1,873

Table S23: Statistics on the size of cascades, including bots. The margin shows
the difference when bots are removed. KS-test for false and true cascades: D =
0.161, p ∼ 0.0

S8.3.3 Secondary Analysis

We also ran a more extreme version of the analysis where we removed all retweets
that trace their origin to a bot account, even if the retweets themselves were made
by non-bot accounts.

Tables S24, S25, S26, and S27 below show the mean (log), the cluster-robust
standard errors (log) and the min and max of the depth, max-breadth, structural
virality, and size of false and true cascades. For each of these measurements, we
also ran two-sample Kolmogorov-Smirnov (KS) tests to compare their distribu-
tions across true and false cascades. The results of the tests are reported in the
table captions. Note that, as before, structural virality is only defined for cascades
of size two or greater (thus the lower N in Table S26 compared to other tables).

From this analysis we see that even in this extreme bot-removal analysis,
where all cascades originated by bots are removed, our findings still hold. Similar
to the previous analysis, we see that bots are accelerating the spread of both true
and false rumors. When we removed cascades originated by bots, both true and
false cascades were similarly affected; compared to the dataset containing cas-
cades with just bots removed, in both cases we saw a reduction in cascade size by
∼23%, depth by ∼19%, max-breadth by ∼24% and structural virality by ∼10%;
compared to the dataset containing all cascades, in both cases we saw a reduction
in cascades’ size by∼42%, depth by∼36%, max-breadth by∼42% and structural
virality by ∼18%. We also saw a reduction in the spread of false rumors and true
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rumors, with false rumors being reduced slightly more than the velocity of the
spread of true rumors when bots are removed, with an average reduction of 19%
for false rumors and 11% for true rumors. This further validates and confirms the
conclusions of our bot analysis in the previous section (Section S8.3.2).

N Mean (log) Margin (%) Robust-SE (log) Min Max
False 73,294 0.127 -36% 0.0099 0 22
True 22,121 0.081 -36% 0.0110 0 11

Table S24: Statistics on the depth of cascades, excluding all cascades originated
by bots. KS-test for false and true cascades: D = 0.111, p ∼ 0.0

N Mean (log) Margin (%) Robust-SE (log) Min Max
False 73,294 0.218 -44% 0.0196 1 21,190
True 22,121 0.136 -40% 0.0235 1 1,390

Table S25: Statistics on the max-breadth of cascades, excluding all cascades orig-
inated by bots. KS-test for false and true cascades: D = 0.111, p ∼ 0.0

N Mean (log) Margin (%) Robust-SE (log) Min Max
False 23,403 0.169 -18% 0.0082 1.0 9.91
True 4,598 0.147 -19% 0.0159 1.0 5.53

Table S26: Statistics on the structural virality of cascades (of size 2 or greater),
excluding all cascades originated by bots. KS-test for false and true cascades:
D = 0.101, p ∼ 0.0

N Mean (log) Margin (%) Robust-SE (log) Min Max
False 73,294 0.237 -43% 0.0215 1 43,146
True 22,121 0.147 -40% 0.0257 1 1,599

Table S27: Statistics on the size of cascades, excluding all cascades originated by
bots. KS-test for false and true cascades: D = 0.110, p ∼ 0.0
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S8.3.4 Bot Sensitivity

In this section, we measure the effect of bot detection sensitivity on our analysis.
As mentioned, for our analysis we set the bot detection likelihood threshold to
be 0.5 as this is the threshold that performs the best and is recommended by the
authors of the algorithm. Here, we measure the effects of more liberal thresholds
(lower than 0.5) on our analysis. We reran the bot detection algorithm for thresh-
olds of 0.1, 0.2 ,0.3, and 0.4. At these thresholds, 96%, 79%, 54%, and 27% of
accounts are identified as bots respectively. We then reran our analysis for thresh-
olds of 0.3, and 0.4 to understand the effect of bot detection sensitivity on our
findings (there is not enough data to rerun the analysis on thresholds of 0.1 and
0.2).

From this analysis we see that even for the very liberal bot detection and re-
moval thresholds of 0.4 and 0.3 (where 27%, and 54% of the accounts respectively
are identified as bots), all our findings still hold. This shows that our results are
not dependent on the sensitivity of the bot detection algorithm.

Sensitivity at 0.4 Tables S28, S29, S30, and S31 below show the mean (log),
the cluster-robust standard errors (log) and the min and max of the depth, max-
breadth, structural virality, and size of false and true cascades. For each of these
measurements, we also ran two-sample Kolmogorov-Smirnov (KS) tests to com-
pare their distributions across true and false cascades. The results of the tests are
reported in the table captions.

N Mean (log) Margin (%) Robust-SE (log) Min Max
False 66,407 0.101 -49% 0.0068 0 18
True 21,277 0.075 -40% 0.0104 0 11

Table S28: Statistics on the depth of cascades, excluding bots (sensitivity set at
0.4). KS-test for false and true cascades: D = 0.055, p ∼ 0.0

N Mean (log) Margin (%) Robust-SE (log) Min Max
False 66,407 0.159 -59% 0.0123 1 14,044
True 21,277 0.126 -45% 0.0205 1 1,156

Table S29: Statistics on the max-breadth of cascades, excluding bots (sensitivity
set at 0.4). KS-test for false and true cascades: D = 0.055, p ∼ 0.0
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N Mean (log) Margin (%) Robust-SE (log) Min Max
False 17,284 0.146 -29% 0.0085 1.0 9.05
True 4,374 0.139 -23% 0.0142 1.0 5.30

Table S30: Statistics on the structural virality of cascades (of size 2 or greater),
excluding bots (sensitivity set at 0.4). KS-test for false and true cascades: D =
0.0441, p ∼ 0.0

N Mean (log) Margin (%) Robust-SE (log) Min Max
False 66,407 0.174 -58% 0.0140 1 40,711
True 21,277 0.137 -44% 0.0226 1 1,485

Table S31: Statistics on the size of cascades, excluding bots (sensitivity set at
0.4). KS-test for false and true cascades: D = 0.0533, p ∼ 0.0

Sensitivity at 0.3 Tables S32, S33, S34, and S35 below show the mean (log),
the cluster-robust standard errors (log) and the min and max of the depth, max-
breadth, structural virality, and size of false and true cascades. For each of these
measurements, we also ran two-sample Kolmogorov-Smirnov (KS) tests to com-
pare their distributions across true and false cascades. The results of the tests are
reported in the table captions.

N Mean (log) Margin (%) Robust-SE (log) Min Max
False 52,593 0.086 -56% 0.0058 0 15
True 19,161 0.070 -44% 0.0103 0 9

Table S32: Statistics on the depth of cascades, excluding bots (sensitivity set at
0.3). KS-test for false and true cascades: D = 0.023, p ∼ 0.0

N Mean (log) Margin (%) Robust-SE (log) Min Max
False 52,593 0.128 -67% 0.0094 1 11,309
True 19,161 0.116 -49% 0.0201 1 973

Table S33: Statistics on the max-breadth of cascades, excluding bots (sensitivity
set at 0.3). KS-test for false and true cascades: D = 0.023, p ∼ 0.0

46



N Mean (log) Margin (%) Robust-SE (log) Min Max
False 13,436 0.138 -31% 0.0077 1.0 8.15
True 3,689 0.130 -28% 0.0119 1.0 4.67

Table S34: Statistics on the structural virality of cascades (of size 2 or greater),
excluding bots (sensitivity set at 0.3). KS-test for false and true cascades: D =
0.057, p ∼ 0.0

N Mean (log) Margin (%) Robust-SE (log) Min Max
False 52,593 0.139 -67% 0.0107 1 35,139
True 19,161 0.117 -52% 0.0222 1 1,053

Table S35: Statistics on the size of cascades, excluding bots (sensitivity set at
0.3). KS-test for false and true cascades: D = 0.0213, p ∼ 0.0

S8.3.5 Alternative Bot Detection Algorithm

As a final test of the robustness of our results with respect to bot activity on Twit-
ter, we reran our analysis using another bot detection algorithm. This algorithm
was trained on features suggested by Almaatouq et al. [75] to identify spammer
accounts in our dataset.

Overall, around 11.1% of the accounts were identified as bots using Almaa-
touq et al.’s detection algorithm, corresponding to 11.9% of the accounts in false
rumors and 10.2% of the accounts in true rumors.

Tables S36, S37, S38, and S39 below show the mean (log), the cluster-robust
standard errors (log) and the min and max of the depth, max-breadth, structural
virality, and size of false and true cascades. For each of these measurements, we
also ran two-sample Kolmogorov-Smirnov (KS) tests to compare their distribu-
tions across true and false cascades. The results of the tests are reported in the
table captions.

From this analysis we see that our findings hold when using another indepen-
dent, but well designed, detection algorithm. Similar to when using the primary
bot detection algorithm, we see that bot accounts are accelerating the spread of
both true and false rumors.

47



N Mean (log) Margin (%) Robust-SE (log) Min Max
False 80,375 0.149 -24% 0.0135 0 23
True 22,455 0.083 -34% 0.0114 0 12

Table S36: Statistics on the depth of cascades, excluding bots (using the alterna-
tive detection algorithm). KS-test for false and true cascades: D = 0.163, p ∼ 0.0

N Mean (log) Margin (%) Robust-SE (log) Min Max
False 80,375 0.273 -30% 0.0283 1 28,859
True 22,455 0.143 -37% 0.0256 1 1,559

Table S37: Statistics on the max-breadth of cascades, excluding bots (using the
alternative detection algorithm). KS-test for false and true cascades: D = 0.163,
p ∼ 0.0

N Mean (log) Margin (%) Robust-SE (log) Min Max
False 30,060 0.183 -11% 0.0075 1.0 10.01
True 4,740 0.152 -16% 0.0166 1.0 5.72

Table S38: Statistics on the structural virality of cascades (of size 2 or greater),
excluding bots (using the alternative detection algorithm). KS-test for false and
true cascades: D = 0.158, p ∼ 0.0

N Mean (log) Margin (%) Robust-SE (log) Min Max
False 80,375 0.295 -30% 0.0279 1 46,196
True 22,455 0.155 -37% 0.0301 1 1,646

Table S39: Statistics on the size of cascades, excluding bots (using the alternative
detection algorithm). KS-test for false and true cascades: D = 0.162, p ∼ 0.0

S8.4 Goodness-of-fit Analysis
We measured the goodness-of-fit of the logistic regression model described in
section S6 and shown in Figure 4b in the main text in several ways. We used
the deviance goodness-of-fit statistic, which is well-suited to logistic regression.
The total deviance goodness-of-fit statistic of our model was 3.4649e + 06, with
3, 724, 190 degrees of freedom, corresponding to a p-value of 1. This means there
are no grounds to reject the null hypothesis that the model is well specified. More-
over, the log-likelihood of our model was −1.7170e + 06, with a log-likelihood
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ratio chi-squared test p-value of 0.000, meaning that the observed relationships
are unlikely to have been found due to chance.

S9 Cluster-robust Standard Errors
All standard errors and regression models reported in this paper are cluster-robust.
This is important for data that are grouped into clusters (such as ours). It is un-
likely that the propagation dynamics of the cascades of the same rumor are unre-
lated (though it is reasonable to assume that whatever the effects might be, they
effect the cascades of the same rumor similarly). As explained, the clusters in
our dataset are the unique rumors. By using cluster-robust methods, we ensure
that any correlation within the rumor clusters is accounted for. Not controlling for
possible error correlation within clusters would most likely yield standard errors
that are misleadingly small. To learn more about cluster-robust inference please
refer to Cameron and Miller’s [59] excellent article on this subject. As expected,
when we do not cluster the standard errors the magnitudes and directions of the
coefficients remain the same, but the precision of the estimates increases.

S10 Complementary Cumulative Distribution
Function

We have used the complementary cumulative distribution function (CCDF) exten-
sively in our analysis. As the name suggests, the CCDF is the complement of the
cumulative distribution function (CDF), that is, it measures how often a distribu-
tion function is above a particular level (whereas the CDF measures how often a
distribution function is below or equal to a particular level). Thus, the CCDF, F ,
of distribution function of X , evaluated at x, is the probability that X will take a
value more than x:

FX(x) = P (X > x) (S10)

In our case, all probabilities are calculated empirically from our data.
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